Republic of Panama Superintendency of Banks

RULE N°. 3-2018 (dated 30 January 2018)

"Whereby the provisions for capital requirements for financial instruments registered in the trading book are established"

THE BOARD OF DIRECTORS

in use of its legal powers and,

WHEREAS:

Due to the issuance of Decree Law 2 dated 22 February 2008, the Executive Branch re-edited Decree Law 9 dated 26 February 1998 and all its amendments as a consolidated text, and this text was approved by means of Executive Decree 52 dated 30 April 2008, hereinafter referred to as the Banking Law;

Pursuant to the provisions of paragraphs 1 and 2 of Article 5 of the Banking Law, safeguarding the soundness and efficiency of the banking system and strengthening and fostering favorable conditions for the development of the Republic of Panama as an international financial center are objectives of the Superintendency of Banks;

Pursuant to paragraphs 3 and 5 of Article 11 of the Banking Law, approving general criteria for the classification of assets at risk, rules for the provision of reserves against risks and establishing the administrative interpretation and scope of the legal provisions and regulations on banking matters are technical duties of the Board of Directors;

According to paragraph 10 of Article 11 of the Banking Law, issuing the technical standards required for compliance with the Law is one of the technical duties of the Board of Directors;

According to the provisions of Article 72 of the Banking Law, in determining the capital adequacy ratio provided for in the Law, the Superintendency may take into account and evaluate other risks in determining the need for capital funds for an appropriate risk management, including market risks, operating risks and country risks;

In accordance with the provisions of paragraph 3 of Article 91 of the Banking Law, banks must submit any other information required by the Superintendency in the frequency and manner determined by the latter;

Market risk presumes the risk of losses arising from adverse movements of product prices in financial markets, which can affect the on- and off-balance positions held by banks. Consequently, it is necessary to establish application rules to regulate the supervision of that risk;

For the Basel Committee, having policies and procedures to determine which positions could be included in the trading book to calculate the regulatory capital is key in ensuring consistency and completeness of the bank's trading book;

For the Basel Committee, trading book instruments must be subject to clearly defined policies and procedures, approved by the bank's top management and aimed at ensuring active risk management;

During its working sessions, the Board of Directors determined it necessary and advisable to update the regulatory framework for managing and administering market risk in banks in order to protect the interests of depositors and the stability of the banking system.

RESOLVES:

CHAPTER I RANGE OF APPLICATION

ARTICLE 1. RANGE AND SCOPE OF APPLICATION. The provisions of this Rule are applicable to banks according to the Article 1 of the Rule on Capital Adequacy issued by the Superintendency.

ARTICLE 2. TRADING BOOK. The financial entity trading book is comprised of those financial instruments a bank holds for one or more of the following purposes:

- 1. Short-term resale;
- 2. Profiting from short-term price movements;
- 3. Locking in arbitrage profits;
- 4. Hedging risks that arise from instruments meeting the above criteria

Furthermore, trading book shall include the financial instruments the Superintendency may identify based on their special characteristics and whose economic basis responds to the above criteria, regardless of the financial instrument rating according to International Financial Reporting Standards (IFRS).

In general, the trading book includes any financial instrument that fits into any of the following categories:

- 1. Instruments held as accounting trading assets or liabilities under IFRS (such that they would be assessed daily at market value and the value variance reflected in the profit and loss account);
- 2. Instruments resulting from market-making activities;
- 3. Instruments resulting from underwriting commitments;
- 4. Equity investment in a fund, except when the daily market price is not available for determining the fund's value;
- 5. Listed equities;
- 6. Short positions, including any positions in Treasury Notes;
- 7. Derivative contracts, except those used in hedging and not carried in the trading book, whose contracts are adequately documented and that contain proof of effective coverage;
- 8. Financial instruments that include derivatives, whether explicit or implicit.

Trading book positions must be duly documented and cannot be moved to other books without the Superintendency of Banks' authorization.

For a financial instrument to be registered in the trading book, its market value must be available on a daily basis or, when appropriate, valued from models that use the maximum amount of information from the markets and are sensitive to the underlying factors determining the fair value of the instrument.

The degree of liquidity of an instrument is a highly-important factor for its classification in the trading book.

ARTICLE 3. MARKET RISK AND RISK FACTORS. For the purposes of applying this rule, "market risk" will be understood as the risk of losses arising from movements in market prices of the instruments held in the trading book of the entity.

The risk events that can affect the fair value of instruments held in the trading book the most, are:

- 1. Changes in risk-free interest rates;
- 2. Changes in yield differentials of an issuer;
- 3. Changes in the exchange rate of a currency;
- 4. Changes in the credit rating of an issuer or the rating of a securitization bond;
- 5. Changes in the prices of stock;
- 6. Changes in the prices of raw materials and other merchandise;
- 7. Changes in the price of gold;
- 8. Default events;
- 9. Liquidity crisis events.

CHAPTER II MARKET RISK AND TRADING BOOK MANAGEMENT AND ADMINISTRATION

ARTICLE 4. MARKET RISK MANAGEMENT. Banks must update fair value daily for all trading book instruments.

Valuation differences will be registered daily in the profit and loss account.

A bank must have clearly defined policies, procedures and documented practices for determining which instruments to include in or to exclude from the trading book for purposes of calculating their regulatory capital.

A bank's internal control functions must conduct a continuing evaluation of instruments both in and out of the trading book to assess whether these instruments are being properly classified initially.

Compliance with the policies and procedures must be fully documented and subject to periodic internal audit and the results must be available for supervisory review.

Financial instruments in the trading book must be subject to clearly defined policies and procedures approved by the board of directors. These policies and procedures must address, as a minimum, the issues listed below:

- 1. The activities the bank considers trading or hedging of included instruments and that, therefore, are in its trading portfolio for regulatory capital purposes;
- 2. The trading strategy (including the expected holding horizon and potential reactions if this limit is exceeded) for each book or instrument in the trading book;
- 3. Setting limits and continuously evaluating their adequacy;
- 4. The process for keeping the board of directors and top management informed as part of the entity's holistic risk management process;
- 5. In the case of financial instruments in the trading book valued by a model, the bank must, as a minimum:
 - a. Identify the relevant risks for the instruments in the trading book;
 - b. Have valuation methodologies that must be explicitly described in the relevant valuation manuals, so that the valuations can be replicated following the

manual's instructions. In particular, provide a detailed description of the databases used and, in general, the sources of information, the assumptions and the estimation methods, when appropriate, of the parameters necessary to use the model;

c. Determine in which way the risks of method-valued financial instruments can be easily covered or the position in the financial instrument can be rapidly liquidated.

ARTICLE 5. RESTRICTIONS ON MOVING INSTRUMENTS BETWEEN BOOKS. There are strict limitations on the ability of banks to move instruments between the trading book and the categorized portfolios in the banking book on their own after the instrument's initial designation. The Superintendency of Banks will only permit the transfers in extraordinary circumstances, at the substantiated request of top management and with the requirement to make the transfer public. Market events, changes in the liquidity of a financial instrument, or a change of trading intent alone are not valid reasons for re-designating an instrument to a different book.

The request from top management mentioned above must have the approval of the board of directors and be duly documented in the meeting minutes, a copy or summary of which will be attached to the trading book re-designation request.

ARTICLE 6. RESPONSIBILITY OF THE BOARD OF DIRECTORS. The bank must identify and appropriately manage the market risks they face. In this sense, it will be the primary responsibility of the board of directors and top management to establish policies and procedures to identify and appropriately manage these risks. This responsibility includes meeting the provisions herein and, particularly, the approval, in its case, of the internal models and limitation policies proposed by the risk unit.

ARTICLE 7. MINIMUM REQUIREMENTS. To identify and appropriately manage market risk, the bank must have the following, as a minimum, in the appropriate areas:

- 1. Organization, duties and delimited and segregated responsibilities;
- 2. Policies and procedures manuals;
- 3. Suitable employees and professionals;
- 4. Documentation, reports and reporting;
- 5. Methods for the identification, prevention, measurement, analysis and valuation of market risks;
- 6. Trading book fair value daily registry;
- 7. Controls and limits for market risk exposure;
- 8. Appropriate computer systems;
- 9. Allocation of equity pursuant to the provisions herein;
- 10. Disclosing in the financial statements, at least, the policies, composition and changes to the trading book, capital requirements, and the profits and losses resulting from the trading book.

ARTICLE 8. ORGANIZATION, DUTIES, DELIMITATION AND SEGREGATION OF RESPONSIBILITIES. The bank will establish the organizational structure and will define, delimit and segregate the duties, authorities and responsibilities of the areas involved in operations subject to market risks. This will include the existence of these duties through the Assets and Liabilities Committee, Investment Committee and/or Risk Management Committee, reflecting a commitment and proactive culture for the control of these risks.

ARTICLE 9. POLICIES AND PROCEDURES MANUALS. The bank will have and apply policies and procedures manuals and guidelines for conducting operations susceptible to market risks. These manuals will also establish the organizational structure, duties and responsibilities of the areas involved.

The bank must also have policies and procedures manuals containing the methods used to appropriately identify and manage market risks. These manuals will include the investment policy, book selection, book management, value analysis and credit risk, book evaluation, and a description of the documentation required for those purposes.

ARTICLE 10. RISK UNIT. Pursuant to the scope of this Rule, this unit will be responsible for:

- 1. The development, application, review and verification of the models;
- 2. The definition of data and methods necessary for estimating and calibrating the models used;
- 3. The calculation of capital requirements;
- 4. Checking that all market data used for the valuation of the trading book's financial instruments are suitable;
- 5. Drafting the risk manuals;
- 6. Reporting market risks to the board of directors;
- 7. Proposing the approval, if applicable, of internal models to measure market risks to the board of directors;
- 8. Proposing, in concert with the treasurer, the risk limits for financial instruments and books to the board of directors.

ARTICLE 11. IDENTIFICATION, MEASUREMENT, ANALYSIS AND VALUATION METHODS. The bank will use methods technically appropriate and validated in the international banking practice to identify, measure, analyze (risks and markets), value, monitor and mitigate the positions affecting the risk management process the bank faces, and must be periodically reviewed. The bank must include in its risk measurement, policies and procedures for the scenarios resulting from a retrospective analysis of stress and worst-case scenarios.

ARTICLE 12. CONTROLS AND LIMITS FOR MARKET RISK EXPOSURE. Pursuant to its own market risks characteristics, the bank will establish internal operating and administrative controls for these market risks, including authorized activities and individual, cumulative and overall internal limits for every segment of the managed trading book. These limits must consider, among others, cumulative realized and unrealized losses in designated period of time.

The limits will also include stop-loss instructions, concentration limits by issuer, instrument, market, geographical location and economic sector, and limits on the entry into new markets and new financial instruments. A continuous assessment of the adequacy and performance of controls and limits must be conducted.

ARTICLE 13. APPROPRIATE COMPUTER SYSTEMS. The bank will have appropriate computer systems to conduct and support the identification, monitoring and management of the market risks the bank faces. The bank should also have appropriate mechanisms to ensure the security and physical and functional contingency plans, including data and processes integrity, of these systems.

The information used for estimating models and making various calculations must be duly registered and kept, both for verifying the validity of the models and for reports that the Superintendency of Banks may request.

ARTICLE 14. INTERNAL AUDITING. Internal auditing will evaluate compliance with the policies and procedures established by banks for conducting transactions subject to market risk, the policies and procedures established for identifying and managing those risks and the provisions herein. These evaluations must be included in the permanent activities of the annual internal auditing plan and must be duly documented through written reports, including the recommendations resulting from them.

Page 6 of 18 Rule N°. 3-2018

CHAPTER III LIQUIDITY COVERAGE RATIO

ARTICLE 15. EQUITY REQUIREMENTS. The bank is required to comply with the minimum market risk capital requirements calculated in accordance with the Technical Appendix. The bank must meet the required capital requirements on a daily basis. To apply Article 14 of the Rule on Capital Adequacy (1-2015), the calculation of risk-weighted assets (RWA) by market risks will be made in accordance with the following formula:

$$RWA = Kx \frac{1}{COEF}$$

where K is the capital requirement calculated for all market risks as determined in the Technical Appendix and COEF is the minimum regulatory value of the Capital Adequacy Ratio established by the Superintendency for each entity.

ARTICLE 16. REPORTING. The bank must submit the minimum capital requirement required to the Superintendency in the form and frequency it determines.

The bank must report the market risk management policies, the banking book structure, required capital requirements and the results obtained from trading book in its fiscal year report.

ARTICLE 17. DOCUMENTATION, REPORTING AND RECORDKEEPING. The bank must document any and all transactions from the moment they are formally considered, their trades, until their completion and conciliation, including all support and supplementary information.

The bank will maintain the reports drafted and the calculations made for estimating capital requirements established herein available for the Superintendency.

CHAPTER IV SANCTIONS

ARTICLE 18. SANCTIONS DUE TO NONCOMPLIANCE. Failing to comply with the provisions herein will be penalized as provided for in Title IV of the Banking Law.

CHAPTER V FINAL PROVISIONS

ARTICLE 39. ENACTMENT. This Rule shall enter into force on 1 June 2019, complying with the quarter closing on 30 June 2019, whose deadline for reporting to the Superintendency will be 30 July 2019.

Given in the city of Panama on the twenty-third (23rd) day of January, two thousand eighteen (2018).

FOR COMMUNICATION, PUBLICATION AND ENFORCEMENT.

THE CHAIRMAN,

THE SECRETARY,

L.J. Montague Belanger

Nicolas Ardito Barletta

TECHNICAL APPENDIX

The following instruments are considered in this rule:

- Bonds
- Securitizations
- Shares
- Forwards
- Swaps
- Options

For any instrument other than those mentioned above, the entity must ask the Superintendency of Banks for the methodology for calculating the capital requirement.

I. Capital requirement for interest risk on bonds

I.1. Risk-free interest rate

- 1. The entity must have a zero-coupon risk-free bond yield curve for each currency should. This curve must be the same one used by the entity for the financial instruments valuation;
- 2. The entity must have a credit differential curve for each issuer, consistent with the valuation of each financial instrument;
- 3. The bond's market value or, if appropriate, its fair value must be available;
- 4. The instrument must be deconstructed into both zero-coupon bonds and independent liquidity flows during the residual term of the bond until maturity. The sum of current zero-coupon bond values in which the financial instrument was deconstructed must match the market price or, if need be, the bond's fair value;
- 5. Only the fixed liquidity flow of the financial instrument, as shown below, will be considered for the calculation of the capital requirements for interest risk;
- 6. Each current zero-coupon bond value will be assigned to one of the vertices described below. The vertices are 0.25, 0.5, 1, 2, 3, 4, 5, 10, 15, 20, and 30 years.
- 7. If the time frame of the zero-coupon bond does not match any vertex, the cash flow will be placed inversely proportional to the distance between the dates of the two nearest vertices.

If F_t is the liquidity flow placed in the residual term t, and T_i and T_{i+1} are the anterior and posterior vertex of t.

Then the amount F_t is distributed in F_i and F_{i+1} as follows:

$$F_i = \frac{T_{i+1}-t}{T_{i+1}-T_i} \ x \ F_t$$
 $F_{i+1} = \frac{t-T_i}{T_{i+1}-T_i} \ x \ F_t$

8. The *Delta* sensitivity for the risk-free interest rate for the current value CV_i in the vertex T_i is defined as follows:

$$SLR_{i}^{k} = \frac{CV_{i}^{k}(z_{i} + 0.0001, d_{i}) - CV_{i}^{k}(z_{i}, d_{i})}{0.0001}$$

 SLR_i^k is the *Delta* sensitivity of the instrument k in vertex i when the zerocoupon interest rate Z_i corresponding to that vertex is displaced one basis point (0.0001 = 0.01%) while maintaining the credit differential constant.

 $CV_i^k(z_i, d_i)$ is the liquidity flow of the current value of instrument k in function T_i in risk-free interest rate z_i and credit differential d_i , which can be null in any particular case.

9. All sensitivities of the financial instruments are added to the vertex T_i , in total M, of the trading book. They can be positive or negative, and result in the net risk-free sensitivity of vertex T_i

$$SLRN_i = \sum_{k=1}^{M} SLR_i^k$$

10. The capital requirement for the above added magnitude is determined according to vertex T_i by multiplying the $SLRN_i$ magnitude by the weight defined in Table 1 below:

Vertex	0.25	0.50	1	2	3	4
Risk weight	2.40%	2.40%	2.25%	1.88%	1.73%	1.62%
Vertex	5	10	15	20	30	
Risk weight	1.50%	1.50%	1.505	1.50%	1.50%	

Table 1. Risk weight according to Vertex

Capital requirement for net exposure in vertex T_i is:

$$KLR_i = SLRN_1 x p_i$$

where ho_i is given in Table 1 above.

11. Correlations. There is a correlation between sensitivities KLR_i and KLR_j assigned to vertices T_i and T_j .

The correlation ratio is defined by:

$$\rho_{ij} = Max \left[\exp\left(-\theta \; \frac{|T_j - T_i|}{Min \; (T_i, T_j)}\right); 0.4 \right]$$

 θ = 3% is a parameter the Superintendency may change according to market conditions.

12. The risk-free interest rate capital requirement for financial instruments denominated in currency *b* is obtained by:

$$K_b = \sqrt{\sum_{i=1}^{V} KLR_i^2 + 2\sum_{i>j}^{V} \rho_{ij} \ x \ KLR_i \ x \ KLR_j}$$

Where V is the number of vertices.

Page 9 of 18 Rule N°. 3-2018

- 13. For bonds denominated in various currencies, the same calculation will be made using the currency zero-coupon risk-free yield curve. All sensitivities obtained are expressed in USD, using the outright exchange rate for each currency.
- 14. Let K_a , K_b , K_c , ..., K_n be the regulatory capital amounts obtained for each currency, all expressed in the functional currency, i.e. Balboas. The capital requirement is defined as follows:

$$K = \sqrt{\sum_{b=1}^{n} K_b^2 + 2 \operatorname{x} \sum_{b < c}^{n} \gamma_{bc} \operatorname{x} S_b \operatorname{x} S_c}$$

with $S_b = \sum KLR_i$ for currency *b* and $S_c = \sum KLR_i$ for currency *c*

In the particular case in which the expression $\sum_{b=1}^{n} K_b^2 + \sum_{b \neq c}^{n} \sum_{b \neq c}^{n} \gamma_{bc} x S_b x S_c$ is a negative number, the following formula will be used:

$$K = \sqrt{\sum_{b=1}^{n} K_{b}^{2} + 2 \times \sum_{b < c}^{n} \gamma_{bc} \times R_{b} \times R_{c}}$$

where
$$R_b = Max(Min(S_b, K_b), -K_b)$$

 $R_b = Max(Min(S_c, K_c), -K_c)$

In all cases, $\gamma_{bc} = 0.5$

15. Correlations scenarios. Three values must be calculated to obtain the capital requirements depending on three correlations scenarios. The scenarios are defined as follows:

Scenario 1. Correlation parameters ρ_{ij} and γ_{bc} are multiplied by 1.25 with a 100% limit.

Scenario 2. Correlation parameters ρ_{ij} and γ_{bc} maintain original values.

Scenario 3. Correlation parameters ρ_{ij} and γ_{bc} and are multiplied by 0.75.

16. The risk-free interest rate capital requirement is determined by the highest amount obtained from the three scenarios.

I.2. Credit risk yield differential

- 17. There are three modalities:
 - a) Non-securitizations;
 - b) Securitizations of the correlation trading book;
 - c) Other securitizations

a) Non-securitizations

- 18. The vertices are 0.25, 0.5, 1, 2, 3, 4, 5, 10, 15, 20, and 30 years.
- 19. The *Delta* sensitivity is calculated for the yield differential of each current value CV_i assigned to vertex T_i as shown:

$$SDR_i^k = \frac{CV_i^k(z_i, d_i + 0.0001) - CV_i^k(z_i, d_i)}{0.0001}$$

 SDR_i^k is the sensitivity of instrument k in vertex i when the yield differential d_i that corresponds to that vertex is displaced one basis point (0.0001 = 0.01%), while maintaining the zero-coupon risk-free interest rate constant. $CV_i^k(z_i, d_i)$ is the current liquid flow value of instrument k in vertex T_i , as a function of risk-free interest rate z_i and credit differential d_i .

- 20. Risk factors taken into consideration for the capital requirements calculation are: i) issuer; ii) rating; iii) sector; and iv) vertex.
- 21. The *Delta* sensitivities calculated in paragraph 19 should be assigned to a bucket, from 1 to 16, according to the Table 2 below:

Investment Grade (IG)					
N.°	Sectors				
1	Sovereigns including central banks and multilateral development banks.				
2	Local government, government-backed non-financials, public administration				
3	Financials including government-backed financials				
4	Basic materials, energy, industrials, agriculture, manufacturing, mining and quarrying				
5	Consumer goods and services, transportation and storage, administrative and support service activities				
6	Technology, telecommunications				
7	Healthcare, utilities, professional and technical activities				
8	Covered bonds				
High yield (HY) and non-rated (NR)					
	Sectors				
9	Sovereigns including central banks, multilateral development banks				
10	Local government, government-backed non-financials, public administration				
11	Financials including government-backed financials				
12	Basic materials, energy, industrials, agriculture, manufacturing, mining and quarrying				
13	Consumer goods and services, transportation and storage, administrative and support service activities				
14	Technology, telecommunications				
15	Healthcare, utilities, professional and technical activities				
16	Other sectors				

Table 2. Yield Buckets

- 22. The risk-weighted sensitivity $KDR_{ij} = SDR_{ij}x \rho$ is defined by means of the result of each *Delta* sensitivity *i* that belongs to a specific bucket *j*, multiplied by the weight ρ_j in Table 3 for bucket j, j = 1, 2, ..., 16.
- 23. Risk weights for the buckets 1 to 16 are:

Table 3. Risk weight by yield

Bucket number	Risk weight
1	0.5%
2	1.0%
3	5.0%
4	3.0%

5	3.0%
6	2.0%
7	1.5%
8	4.0%
9	3.0%
10	4.0%
11	12.0%
12	7.0%
13	8.5%
14	5.5%
15	5.0%
16	12.0%

24. Correlations. Between two risk-weighted sensitivities k and l, taking into consideration the issuer, vertex and the same bucket j, the correlation parameter is determined as follows:

$$\rho_{kl} = \rho_{kl}^{issuer} x \rho_{kl}^{basis}$$

$$\rho_{kl}^{name} = \begin{cases} 1 \text{ if } k \text{ and } l \text{ issuers match} \\ 0.35 \text{ otherwise} \end{cases}$$

$$\rho_{kl}^{basis} = \begin{cases} 1 \text{ if } k \text{ and } l \text{ bases match} \\ 0.65 \text{ otherwise} \end{cases}$$

25. There is an exception to the above criteria for the "Other sector" bucket. The capital requirement within the "Other sectors" bucket is the simple addition of total values of the net weighted *Delta* sensitivities allocated to this bucket:

$$K_{b \ (other \ bucket)} = \sum_{i} |KDR_i|$$

This capital will be added to the capital level for all types of risk buckets.

26. Capital requirement K_h within each bucket h is determined as follows:

$$K_h = \sqrt{\sum_{i=1}^{n_h} KDR_{ih}^2 + 2x} \sum_{i < j}^{n_h} \rho_{ij} x KDR_{ih} x KDR_{jh}$$

Given the bucket *h* containing risk-weighted sensitivities n_h , $\sum_{i=1}^{n_h} KDR_{ih}^2$

is the sum of the squares of the risk-weighted *Delta* sensitivities allocated to the bucket h.

 $\sum_{i < j}^{h} \rho_{ij} \times KDR_{ih} \times KDR_{jh}$ is the sum of all correlation parameter products multiplied

by the risk-weighted sensitivities of buckets other than h.

27. The correlation ratio between the capital requirements of two different buckets is defined using the rating and sector factors.

The correlation parameter γ_{bc} is determined as follows:

Page 12 of 18 Rule N°. 3-2018

$$\gamma_{\rm bc} = \gamma_{\rm bc}^{\rm rating} \times \gamma_{\rm bc}^{\rm sector}$$

 $\gamma_{bc}^{\ rating} = \begin{cases} 1 \ if \ buckets \ b \ and \ c \ have \ the \ same \ rating \ (IG \ or \ HY \ / \ NR) \\ 0.50 \ otherwise \end{cases}$

 $\gamma_{bc}^{sector} = \begin{cases} 1 \text{ if buckets } b \text{ and } c \text{ are from the same sector} \\ otherwise \text{ determined from Table 4} \end{cases}$

Table 4. Correlation between sector

	1/9	2/10	3/11	4/12	5/13	6/14	7/15	8
1/9		0.75	0.10	0.20	0.25	0.20	0.15	0.10
2/10			0.05	0.15	0.20	0.15	0.10	0.10
3/11				0.05	0.15	0.20	0.05	0.20
4/12					0.20	0.25	0.05	0.05
5/13						0.25	0.05	0.15
6/14							0.05	0.20
7/15								0.05
8								

28. Taking into account the rating and sector factors, the capital requirement is determined as follows:

$$K = \sqrt{\sum_{j=1}^{16} K_j^2 + 2 \times \sum_{b < c}^{16} \gamma_{bc} \times S_b \times S_c}$$

with $S_b = \sum KDR_{ib}$ for bucket *b* and $S_c = \sum KDR_{ic}$ for bucket *c*.

In the particular case in which the expression $\sum_{b=1}^{n} K_b^2 + 2 \times \sum_{b<c}^{n} \gamma_{bc} \times S_b \times S_c$ is a negative number, the following formula will be used:

$$K = \sqrt{\sum_{b=1}^{n} K_{b}^{2} + 2 \times \sum_{b < c}^{n} \gamma_{bc} \times R_{b} \times R_{c}}$$

Where $R_b = Max(Min(S_b, K_b), -K_b)$ $R_c = Max(Min(S_c, K_c), -K_c)$

29. Correlation scenarios. Three values must be calculated to obtain the capital requirements depending on three correlation scenarios. The scenarios are defined as follows:

Scenario 1. Correlation parameters ρ_{ij} and γ_{bc} are multiplied by 1.25 with a 100% limit.

Scenario 2. Correlation parameters ρ_{ij} and γ_{bc} maintain the original values.

Scenario 3. Correlation parameters ρ_{ij} and γ_{bc} are multiplied by 0.75.

30. The capital requirement for yield difference risk is determined by the highest amount obtained from the three scenarios.

Securitizations of the correlation trading portfolio b)

- 31. Sensitivities for each instrument should be calculated (at the risk-free interest rate and yield differential) according to the underlying interest rate determining its value or, if need be, considering the instrument's valuation model.
- 32. The vertices are 0.25, 0.5, 1, 2, 3, 4, 5, 10, 15, 20, and 30 years.
- An instrument belongs to the "Securitizations of the correlation trading portfolio" 33. if it satisfies the following criteria:
 - (a) The instrument is not a re-securitization position;
 - (b) The instrument is traded on a market in which there are independent purchase and sale offers such that the daily price can be determined;
 - The instrument is not connected with an underlying retail, residential (c) mortgage or commercial mortgage exposure.
- 34. The risk buckets for the Securitizations of the correlation trading portfolio are the same as those defined in Table 2.
- The risk weights are defined in Table 5. 35.

Table 5. Risk weight of the Securitizations of the Correlation Trading **Portfolio**

Bucket number	Risk weight
1	4.0%
2	4.0%
3	8.0%
4	5.0%
5	4.0%
6	3.0%
7	2.0%
8	60%
9	13.0%
10	13.0%
11	16.0%
12	10.0%
13	12.0%
14	12.0%
15	12.0%
16	13.0%

36. The correlations ρ_{kl} and γ_{bc} are the same as defined in paragraphs 24 and 26.

Other securitizations c)

Securitization instruments that are not classified in the above portfolio, will be 37. allocated to one of the following 25 buckets:

Table	6. \$	Secur	itizations

Senior Investment Grade (IG)					
N.°	Sectors				
1	RMBS – Prime				
2	RMBS – Mid-prime				
3	RMBS – Sub-prime				
4	CMBS				
5	ABS – Student loans				
6	ABS – Credit cards				
7	ABS – Auto				
8	CLO non-correlation trading portfolio				
	SG-TRAD-201800123 MAR -07-18				

TRANSLATION

Non-senior Investment Grade (IG)				
	Sectors			
9	RMBS – Prime			
10	RMBS – Mid-prime			
11	RMBS – Sub-prime			
12	CMBS			
13	ABS – Student loans			
14	ABS – Credit cards			
15	ABS – Auto			
16	CLO non-correlation trading portfolio			
	High yield (HY) & non-rated (NR)			
	Sectors			
17	RMBS – Prime			
18	RMBS – Mid-prime			
19	RMBS – Sub-prime			
20	CMBS			
21	ABS – Student loans			
22	ABS – Credit cards			
23	ABS – Auto			
24	CLO non-correlation trading portfolio			
25	Other sector			

38. The risk weights for the buckets 1 to 8 (Senior Investment Grade) are provided in Table 7.

Table 7. Risk weight for the buckets 1 to 8

Bucket number	Risk weight
1	0.9%
2	1.5%
3	2.0%
4	2.0%
5	0.8%
6	1.2%
7	1.2%
8	1.4%

- 39. The risk weight for the buckets 9 to 16 (Non-senior Investment Grade) are equal to the corresponding risk weights for buckets 1 to 8 multiplied by 1.25.
- 40. The risk weights for buckets 17 to 24 (High yield and non-rated) are equal to the corresponding risk weights for buckets 1 to 8 multiplied by 1.75.
- 41. The risk weight for bucket 25 is set at 3.5%.
- 42. Correlations between sensitivities within the same bucket are determined as follows:

$$\rho_{kl} = \rho_{kl}^{tranche} x \rho_{kl}^{vertex}$$

 $\rho_{kl}^{tranche} = \begin{cases} 1 \text{ if } k \text{ and } l \text{ tranches match} \\ 0.40 \text{ otherwise} \end{cases}$

$$\rho_{kl}^{vertex} = \begin{cases} 1 \ if \ k \ and \ l \ vertex \ match \\ 0.85 \ otherwise \end{cases}$$

43. There is an exception to the above criterion for the "Other sector" bucket. The "other sector" bucket capital requirement is the simple sum of the absolute values of the net weighted sensitivities allocated to this bucket:

Page 15 of 18 Rule N°. 3-2018

$$K_{b (other \ bucket)} = \sum_{i} |KDR_i|$$

This capital will be added to the level of capital for all risk classes.

- 44. The correlation parameter γ_{bc} for the aggregation of capital between buckets is set as 0%.
- 45. The capital requirement for the "Other Securitizations" portfolio is obtained by first calculating the capital requirement for each bucket with the exception of the "Other sector" bucket using a formula similar to the one in paragraph 26 and then adding the square root of the sum of the squares of the capital requirements for each bucket to, in its case, the capital requirement for the "other sector" bucket.

II. Equity risk

- 46. The exposure of an equity risk position is equal to its market value.
- 47. Each exposure must be assigned to one of the following buckets in [Table 8].

-	Table	8.	Equity	risk	buckets	5
-						_
		_				

Bucket	Risk indicator	Weight	
1	l < 1.25%	22%	
2	1.25% ≤ I < 2.00%	36%	
3	2.00% ≤ I < 2.75%	52%	
4	2.75% ≤I 3.50%	69%	
5	3.50% ≤ I	80%	

The risk indicator is defined by the typical profitability deviation of the stock calculated by the market prices of the last 30 days.

$$I = \sqrt{\frac{\sum_{t=1}^{30} (R_t - \overline{R})^2}{30}} \qquad R_t = \frac{P_t - P_{t-1}}{P_{t-1}} \qquad \overline{R} = \frac{\sum_{t=1}^{30} R_t}{30}$$

 P_t is the market price for the stock calculated on the day.

48. The capital requirement for each position is calculated by multiplying the risk exposure by the weight according to the assigned bucket.

$$K_i = E_i \times p_i$$

49. The capital requirement for the equity risk is calculated using to the following formula:

$$K = \sqrt{\sum_{i=1}^{n} K_i^2 + 2 \times \sum_{i < j}^{n} \rho \times K_i \times K_j}$$

The correlation ratio takes the 0.40 value for the correlation between long positions and between short positions and -0.40 for the correlation between long and short positions.

50. Liquidity correction. If in the indicator calculations for the last 30 days there are more than six days where there was no market price, the exposure will be placed in the next lower bucket with a weight limit of 80%.

Page 16 of 18 Rule N°. 3-2018

III. Foreign exchange risk

51. The sensitivity of a financial instrument whose value depends on a particular foreign exchange is calculated as follows:

$$SFX = \frac{V_i(1.01 \times FX) - V_i(FX)}{0.01}$$

 $V_i(FX)$ is the market value of the financial instrument expressed as a function of the outright value of the FX foreign exchange.

 $V_i(1.01 \times FX)$ is the value of the financial instrument when the foreign exchange is increased by 1%.

52. The capital requirement by type of foreign exchange risk is obtained by multiplying the sensitivity by 30%.

IV. Forwards on bonds, interest rates, stock and currencies

53. The *Delta* sensitivity for forwards on bonds is determined as follows:

$$SD = S \times N \times F \times FD$$

S is the sensitivity or modified duration. N is the nominal value of the contract F is the forward price of the bond (not the forward contract value). FD is the discount factor calculated from the zero-coupon bond risk-free interest rate for the residual term to the final maturity.

- 54. The capital requirement is determined by multiplying each *Delta* sensitivity by the risk weight matching that of the vertex closest to the residual term of the underlying bond.
- 55. The capital requirement added to the forwards on bonds, is the absolute value of the sum of capital requirements for the buying positions less the sum of capital requirements for selling positions. It does not recognize a decrease in capital requirements due to correlations.
- 56. The *Delta* sensitivity of derivative contracts relative to interest rates (FRA) is determined as follows:

$$SD = N \times \Delta T \times FD$$

N is the nominal value of the contract. ΔT is the underlying term for the interest rate agreed to in the contract. FD is the discount factor calculated with the zero-coupon bond risk-free interest rate for the residual term to the final maturity.

- 57. The capital requirement is determined by multiplying each *Delta* sensitivity by the risk weight established for the risk-free interest rates of the vertex closest to the residual term of the contract.
- 58. The *Delta* sensitivity of forward contracts on stocks is determined as follows:

$$SD = N \times F \times FD$$

N is the nominal value of the contract. F is the forward price of the stock (not the value of the forward contract) FD is the discount factor calculated with the zero-coupon bond risk-free interest rate for the residual term to the final maturity.

59. The capital requirement is determined by multiplying the *Delta* sensitivity by the risk weight established for the underlying stock.

- 60. To add forwards on the same underlying stock, the net position must be determined based on the buying and selling positions.
- 61. The addition of capital to the forwards on stock portfolio should consider long and short net positions and apply the correlation ratios determined in paragraph 49.
- 62. The *Delta* sensitivity for forwards on currencies are determined as follows:

$$SD = N \times F \times FD$$

N is the nominal value of the contract.

F is the type of forward exchange on the currency (not the value of the forward contract).

FD is the discount factor calculated with the zero-coupon bond risk-free interest rate for the residual term to the final maturity.

- 63. The capital requirement is determined by multiplying the *Delt*a sensitivity by the risk weight determined for the underlying currency.
- 64. To add forward contracts on the same underlying currency, the net position must be determined based on the buying and selling positions.
- 65. The correlation ratio between currencies is set at 0%.

V. Swaps contracts

- 66. For interest swap contracts, the current value of each fixed liquidity flows will be assigned to each of the following vertices: 0.25, 0.50, 1, 2, 3, 4, 5, 10, 15, 20, and 30 years.
- 67. The capital requirement will be obtained by applying the methodology established in paragraphs 8, 9, 10, and 11.
- 68. If the swap is denominated in a currency other than the balboa, the capital requirement by foreign exchange risk must be determined, taking into consideration that the exposure is the fair value of the swap in the other currency and applying the provisions of paragraphs 51 and 52.
- 69. For a currency swap, the capital requirements must be calculated by fixed interest rates in each currency using the corresponding zero-coupon interest rate curve.
- 70. The capital requirement for foreign exchange risk of a currency swap is determined by the liquidity flows denominated in currencies other than the balboa. The exposure comes from the fair value of the liquidity flows in each currency and the application of the provisions of paragraphs 51 and 52.

VI. Options

- 71. The calculation of capital requirements for the options will be made by grouping the options maintained in the trading portfolio according to the different underlying assets. For each underlying asset, the options whose risk is linked to increases in the value of the underlying asset and the options whose risk is linked to decreases in the value of the underlying asset will be grouped together. The capital required for each group of options of the same underlying asset will be the absolute value of the difference in capital required for each of the above groups.
- 72. Capital requirements for options on stock, currencies and bonds. The capital requirement for each option will be calculated as the absolute value of the difference between the value of the option calculated with the current value of the underlying asset and the value of the option using the critical value of the underlying asset. However, if that absolute value is greater than the current value of the option, the capital requirement will be the current value of the option. This means that S being the current value of the underlying asset and S' being the value of the underlying asset calculated under the risk methodology determined according to the type of financial

instrument. f being the price of the option based on the underlying asset, S being the current value of the underlying asset and S' being the critical value of the underlying asset, capital requirement K is defined as follows:

$$K = Min(|f(S') - f(S)|, f(S))$$

The critical value of the underlying asset is reached when the loss of value of the underlying asset equals the capital required to maintain a position in the underlying asset.

73. Capital requirements for interest rate options. The capital requirements for interest rate options (caps, floors and similar) will be calculated by the absolute value of the difference in the value of the option calculated with the zero-coupon risk-free interest rate curve and the value of the option calculated with the new curve resulting from displacing the original curve by adding or deducting the values defined in the table below from the original curve. However, if that absolute value is greater than the value of the option, the capital requirement will be the value of the option.

Vertex						
0.25	00.50	1	2	3	4	
Rate variation						
0.09%	0.09%	0.09%	0.07%	0.07%	0.06%	
Vertex						
5	10	15	20	30		
Rate variation						
0.06%	0.06%	0.06%	0.06%	0.06%		

The capital requirement is calculated by means of the following expression:

$$\mathsf{K} = \mathsf{Min}(|\mathsf{f}(\mathsf{z} + \Delta \mathsf{z}) - \mathsf{f}(\mathsf{z})|, \mathsf{f}(\mathsf{z}))$$

where z represents the vector of current interest rates, f(z) is the current value of the option, and $f(z + \Delta z)$ is the value of the option adding or deducting the values in the table above from the current interest rate.

74. The capital requirement for the options portfolio will be obtained by the sum of equity calculated for each type of options. Net calculations are only permitted for options on the same underlying asset. Diversification benefits are not acceptable, as there are residual risks not taken into account — especially *vega* risk.